VIII-th International Conference "SOLITONS, COLLAPSES AND TURBULENCE: Achievements, Developments and Perspectives" (SCT-17) in honor of Evgeny Kuznetsov's 70th birthday
May, 21-25, 2017
Chernogolovka, Russia
 
   

Symmetric spaces and new 2-component integrable NLS equations
Abstract:
\documentclass{article}
\usepackage{amssymb,color,amsmath}
%\usepackage[cp1251]{inputenc}

%\usepackage[T2A]{fontenc}
%\usepackage[english,bulgarian]{babel}

\def\ad{\mbox{ad\,}}
\def\Ad{\mbox{Ad\,}}
\def\tr{\mbox{tr\,}}
\def\im{\mbox{Im\,}}
\def\re{\mbox{Re\,}}
\def\diag{\mbox{diag\,}}
\def\a{{\boldsymbol a}}
\def\b{{\boldsymbol b}}
\def\m{{\boldsymbol m}}
\def\c{{\boldsymbol c}}
\def\d{{\boldsymbol d}}
\def\e{{\boldsymbol e}}
\def\h{{\boldsymbol h}}
\def\q{{\boldsymbol q}}
\def\p{{\boldsymbol p}}
\def\T{{\boldsymbol T}}
\def\S{{\boldsymbol S}}
\def\R{{\boldsymbol R}}
\def\x{{\boldsymbol x}}
\def\y{{\boldsymbol y}}

\def\v{{\boldsymbol v}}
\def\w{{\boldsymbol w}}
\def\bPsi{{\boldsymbol \Psi}}
\def\bPhi{{\boldsymbol \Phi}}


\def\otimescomma{\mathop{\otimes}\limits_{'}}

\def\ad{\mbox{ad\,}}
\def\Ad{\mbox{Ad\,}}
\def\tr{\mbox{tr\,}}
\def\im{\mbox{Im\,}}
\def\re{\mbox{Re\,}}
\def\diag{\mbox{diag\,}}

\def\otimescomma{\mathop{\otimes}\limits_{'}}
\def\wedgecomma{\mathop{\wedge}\limits_{'}}
\def\osumm{\mathop{\oplus}\limits}
\def\ocup{\mathop{\cup}\limits}
\def\sump{\mathop{\mathop{\sum}\nolimits'}\limits}

\def\bbbq{{\Bbb Q}}
\def\bbbe{{\Bbb E}}
\def\bbbc{{\Bbb C}}
\def\bbbd{{\Bbb D}}
\def\bbbr{{\Bbb R}}
\def\bbbt{{\Bbb T}}
\def\bbbs{{\Bbb S}}
\def\bbbz{{\Bbb Z}}
\def\openone{\leavevmode\hbox{\small1\kern-3.3pt\normalsize1}}

\begin{document}

\title{Symmetric spaces and new 2-component integrable NLS equations}

\author{{\bf V. S. Gerdjikov} \\[5pt]
\sl Institute of Mathematics and Informatics \\
Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
%Acad. Georgi Bonchev Str., Block 8, \\
%Institute for Advanced Physical Studies, New Bulgarian University \\
%21 Montevideo Street, Sofia 1618, Bulgaria
}
\date{}
\maketitle

The fundamental properties of the multi-component nonlinear
Schr\"o\-dinger (NLS) type models related to the D.III symmetric spaces are
analyzed. Their Lax operator in the case $SO^*(2r)/U(r)$ take the form:
\begin{equation*}\label{eq:}\begin{split}
L\psi & \equiv \left( i \frac{\partial }{ \partial x } +
\left(\begin{array}{ccc} 0 & \q \\ \p & 0 \end{array}\right) - \lambda
\left(\begin{array}{ccc} \openone & 0 \\ 0 & -\openone \end{array}\right) \right) \psi(x,t,\lambda)=0,
\end{split}\end{equation*}
New types of $\mathbb{Z}_r\otimes \mathbb{Z}_2$ Mikhailov reductions of these systems are
constructed, after which $Q(x,t)$ with $r=5$ depends on only two complex functions as follows:
\[ \q(x,t) = \frac{1}{\sqrt{6}} \left(\begin{array}{ccccc} q_1 & q_2 & q_2 & q_1 & 0 \\
q_2 & -q_2 & q_1 & 0 & q_1 \\ q_2 & q_1 & 0 & q_1 & -q_2 \\ q_1 & 0 & q_1 & q_2 & q_2 \\
0 & q_1 & -q_2 & q_2 & -q_1 \end{array}\right), \qquad \p = \q^\dag . \]

As a result we obtain a 2-component NLS type system with Hamiltonian \cite{1}:
\begin{equation*}\label{eq:}\begin{split}
H= \frac{1}{2}\left| \frac{\partial q_1}{ \partial x } \right|^2 +
\frac{1}{2}\left| \frac{\partial q_2}{ \partial x } \right|^2 - \left( |q_1|^2 + |q_2|^2\right)^2
- \frac{1}{2} \left(|q_1|^2 + G\right)^2 - \frac{1}{2} \left(|q_2|^2 - G\right)^2,
\end{split}\end{equation*}
where $G=q_1 q_2^* + q_1^*q_2$.
The spectral properties of the reduced Lax operator $L $
and the fundamental properties of the relevant class
of nonlinear evolution equations are described. Special attention is paid to the
recursion operators and the bi-Hamiltonian properties of the relevant NLEE.

Other examples of new 2-component NLS equations related to other types of
symmetric spaces are presented in \cite{2}.

\begin{thebibliography}{1}
\bibitem{1} V.S. Gerdjikov, A. A. Stefanov. New types of two component NLS-type equations.
Pliska Studia Mathematica {\bf 26}, 53--66 (2016).

\bibitem{2} V. S. Gerdjikov. Kulish-Sklyanin type models: integrability and reductions.
Submitted to TMF.
\end{thebibliography}


\end{document}



Authors
Gerdjikov Vladimir Stefanov (Presenter)
(no additional information)

 
 
 © 2012, Landau Institute for Theoretical Physics RAS www.itp.ac.ru
Contact webmaster