|
|||||
Symmetric spaces and new 2-component integrable NLS equations
Abstract:
\documentclass{article}
\usepackage{amssymb,color,amsmath} %\usepackage[cp1251]{inputenc} %\usepackage[T2A]{fontenc} %\usepackage[english,bulgarian]{babel} \def\ad{\mbox{ad\,}} \def\Ad{\mbox{Ad\,}} \def\tr{\mbox{tr\,}} \def\im{\mbox{Im\,}} \def\re{\mbox{Re\,}} \def\diag{\mbox{diag\,}} \def\a{{\boldsymbol a}} \def\b{{\boldsymbol b}} \def\m{{\boldsymbol m}} \def\c{{\boldsymbol c}} \def\d{{\boldsymbol d}} \def\e{{\boldsymbol e}} \def\h{{\boldsymbol h}} \def\q{{\boldsymbol q}} \def\p{{\boldsymbol p}} \def\T{{\boldsymbol T}} \def\S{{\boldsymbol S}} \def\R{{\boldsymbol R}} \def\x{{\boldsymbol x}} \def\y{{\boldsymbol y}} \def\v{{\boldsymbol v}} \def\w{{\boldsymbol w}} \def\bPsi{{\boldsymbol \Psi}} \def\bPhi{{\boldsymbol \Phi}} \def\otimescomma{\mathop{\otimes}\limits_{'}} \def\ad{\mbox{ad\,}} \def\Ad{\mbox{Ad\,}} \def\tr{\mbox{tr\,}} \def\im{\mbox{Im\,}} \def\re{\mbox{Re\,}} \def\diag{\mbox{diag\,}} \def\otimescomma{\mathop{\otimes}\limits_{'}} \def\wedgecomma{\mathop{\wedge}\limits_{'}} \def\osumm{\mathop{\oplus}\limits} \def\ocup{\mathop{\cup}\limits} \def\sump{\mathop{\mathop{\sum}\nolimits'}\limits} \def\bbbq{{\Bbb Q}} \def\bbbe{{\Bbb E}} \def\bbbc{{\Bbb C}} \def\bbbd{{\Bbb D}} \def\bbbr{{\Bbb R}} \def\bbbt{{\Bbb T}} \def\bbbs{{\Bbb S}} \def\bbbz{{\Bbb Z}} \def\openone{\leavevmode\hbox{\small1\kern-3.3pt\normalsize1}} \begin{document} \title{Symmetric spaces and new 2-component integrable NLS equations} \author{{\bf V. S. Gerdjikov} \\[5pt] \sl Institute of Mathematics and Informatics \\ Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria. %Acad. Georgi Bonchev Str., Block 8, \\ %Institute for Advanced Physical Studies, New Bulgarian University \\ %21 Montevideo Street, Sofia 1618, Bulgaria } \date{} \maketitle The fundamental properties of the multi-component nonlinear Schr\"o\-dinger (NLS) type models related to the D.III symmetric spaces are analyzed. Their Lax operator in the case $SO^*(2r)/U(r)$ take the form: \begin{equation*}\label{eq:}\begin{split} L\psi & \equiv \left( i \frac{\partial }{ \partial x } + \left(\begin{array}{ccc} 0 & \q \\ \p & 0 \end{array}\right) - \lambda \left(\begin{array}{ccc} \openone & 0 \\ 0 & -\openone \end{array}\right) \right) \psi(x,t,\lambda)=0, \end{split}\end{equation*} New types of $\mathbb{Z}_r\otimes \mathbb{Z}_2$ Mikhailov reductions of these systems are constructed, after which $Q(x,t)$ with $r=5$ depends on only two complex functions as follows: \[ \q(x,t) = \frac{1}{\sqrt{6}} \left(\begin{array}{ccccc} q_1 & q_2 & q_2 & q_1 & 0 \\ q_2 & -q_2 & q_1 & 0 & q_1 \\ q_2 & q_1 & 0 & q_1 & -q_2 \\ q_1 & 0 & q_1 & q_2 & q_2 \\ 0 & q_1 & -q_2 & q_2 & -q_1 \end{array}\right), \qquad \p = \q^\dag . \] As a result we obtain a 2-component NLS type system with Hamiltonian \cite{1}: \begin{equation*}\label{eq:}\begin{split} H= \frac{1}{2}\left| \frac{\partial q_1}{ \partial x } \right|^2 + \frac{1}{2}\left| \frac{\partial q_2}{ \partial x } \right|^2 - \left( |q_1|^2 + |q_2|^2\right)^2 - \frac{1}{2} \left(|q_1|^2 + G\right)^2 - \frac{1}{2} \left(|q_2|^2 - G\right)^2, \end{split}\end{equation*} where $G=q_1 q_2^* + q_1^*q_2$. The spectral properties of the reduced Lax operator $L $ and the fundamental properties of the relevant class of nonlinear evolution equations are described. Special attention is paid to the recursion operators and the bi-Hamiltonian properties of the relevant NLEE. Other examples of new 2-component NLS equations related to other types of symmetric spaces are presented in \cite{2}. \begin{thebibliography}{1} \bibitem{1} V.S. Gerdjikov, A. A. Stefanov. New types of two component NLS-type equations. Pliska Studia Mathematica {\bf 26}, 53--66 (2016). \bibitem{2} V. S. Gerdjikov. Kulish-Sklyanin type models: integrability and reductions. Submitted to TMF. \end{thebibliography} \end{document} Authors
(no additional information) |
|||||
© 2012, Landau Institute for Theoretical Physics RAS www.itp.ac.ru
Contact webmaster |